CHAPTER 2 Motion in One Dimension

Figure 2.1 Shanghai Maglev. At this rate, a train traveling from Boston to Washington, DC, a distance of 439 miles, could make the trip in under an hour and a half. Presently, the fastest train on this route takes over six hours to cover this distance. (Alex Needham, Public Domain)

Chapter Outline

2.1 Relative Motion, Distance, and Displacement

2.2 Speed and Velocity

- 2.3 Position vs. Time Graphs
- 2.4 Velocity vs. Time Graphs

INTRODUCTION Unless you have flown in an airplane, you have probably never traveled faster than 150 mph. Can you imagine traveling in a train like the one shown in Figure 2.1 that goes over 300 mph? Despite the high speed, the people riding in this train may not notice that they are moving at all unless they look out the window! This is because motion, even motion at 300 mph, is relative to the observer.

In this chapter, you will learn why it is important to identify a reference frame in order to clearly describe motion. For now, the motion you describe will be one-dimensional. Within this context, you will learn the difference between distance and displacement as well as the difference between speed and velocity. Then you will look at some graphing and problem-solving techniques.

2.1 Relative Motion, Distance, and Displacement

Section Learning Objectives

By the end of this section, you will be able to do the following:

- Describe motion in different reference frames
- Define distance and displacement, and distinguish between the two
- Solve problems involving distance and displacement

Section Key Terms

displacement	distance	kinematics	magnitude
position	reference frame	scalar	vector

Defining Motion

Our study of physics opens with **kinematics**—the study of motion without considering its causes. Objects are in motion everywhere you look. Everything from a tennis game to a space-probe flyby of the planet Neptune involves motion. When you are resting, your heart moves blood through your veins. Even in inanimate objects, atoms are always moving.

How do you know something is moving? The location of an object at any particular time is its **position**. More precisely, you need to specify its position relative to a convenient **reference frame**. Earth is often used as a reference frame, and we often describe the position of an object as it relates to stationary objects in that reference frame. For example, a rocket launch would be described in terms of the position of the rocket with respect to Earth as a whole, while a professor's position could be described in terms of where she is in relation to the nearby white board. In other cases, we use reference frames that are not stationary but are in motion relative to Earth. To describe the position of a person in an airplane, for example, we use the airplane, not Earth, as the reference frame. (See Figure 2.2.) Thus, you can only know how fast and in what direction an object's position is changing against a background of something else that is either not moving or moving with a known speed and direction. The reference frame is the coordinate system from which the positions of objects are described.

Figure 2.2 Are clouds a useful reference frame for airplane passengers? Why or why not? (Paul Brennan, Public Domain)

Your classroom can be used as a reference frame. In the classroom, the walls are not moving. Your motion as you walk to the door, can be measured against the stationary background of the classroom walls. You can also tell if other things in the classroom are moving, such as your classmates entering the classroom or a book falling off a desk. You can also tell in what direction something is moving in the classroom. You might say, "The teacher is moving toward the door." Your reference frame allows you to determine not only that something is moving but also the direction of motion.

You could also serve as a reference frame for others' movement. If you remained seated as your classmates left the room, you would measure their movement away from your stationary location. If you and your classmates left the room together, then your perspective of their motion would be change. You, as the reference frame, would be moving in the same direction as your other moving classmates. As you will learn in the **Snap Lab**, your description of motion can be quite different when viewed from different reference frames.

Snap Lab

Looking at Motion from Two Reference Frames

In this activity you will look at motion from two reference frames. Which reference frame is correct?

- Choose an open location with lots of space to spread out so there is less chance of tripping or falling due to a collision and/or loose basketballs.
- 1 basketball

Procedure

- 1. Work with a partner. Stand a couple of meters away from your partner. Have your partner turn to the side so that you are looking at your partner's profile. Have your partner begin bouncing the basketball while standing in place. Describe the motion of the ball.
- 2. Next, have your partner again bounce the ball, but this time your partner should walk forward with the bouncing ball. You will remain stationary. Describe the ball's motion.
- 3. Again have your partner walk forward with the bouncing ball. This time, you should move alongside your partner while continuing to view your partner's profile. Describe the ball's motion.
- 4. Switch places with your partner, and repeat Steps 1–3.

GRASP CHECK

How do the different reference frames affect how you describe the motion of the ball?

- a. The motion of the ball is independent of the reference frame and is same for different reference frames.
- b. The motion of the ball is independent of the reference frame and is different for different reference frames.
- c. The motion of the ball is dependent on the reference frame and is same for different reference frames.
- d. The motion of the ball is dependent on the reference frames and is different for different reference frames.

History: Galileo's Ship

Figure 2.3 Galileo Galilei (1564–1642) studied motion and developed the concept of a reference frame. (Domenico Tintoretto)

The idea that a description of motion depends on the reference frame of the observer has been known for hundreds of years. The 17th-century astronomer Galileo Galilei (Figure 2.3) was one of the first scientists to explore this idea. Galileo suggested the following thought experiment: Imagine a windowless ship moving at a constant speed and direction along a perfectly calm sea. Is there a way that a person inside the ship can determine whether the ship is moving? You can extend this thought experiment

by also imagining a person standing on the shore. How can a person on the shore determine whether the ship is moving?

Galileo came to an amazing conclusion. Only by looking at each other can a person in the ship or a person on shore describe the motion of one relative to the other. In addition, their descriptions of motion would be identical. A person inside the ship would describe the person on the land as moving past the ship. The person on shore would describe the ship and the person inside it as moving past. Galileo realized that observers moving at a constant speed and direction relative to each other describe motion in the same way. Galileo had discovered that a description of motion is only meaningful if you specify a reference frame.

GRASP CHECK

Imagine standing on a platform watching a train pass by. According to Galileo's conclusions, how would your description of motion and the description of motion by a person riding on the train compare?

- a. I would see the train as moving past me, and a person on the train would see me as stationary.
- b. I would see the train as moving past me, and a person on the train would see me as moving past the train.
- c. I would see the train as stationary, and a person on the train would see me as moving past the train.
- d. I would see the train as stationary, and a person on the train would also see me as stationary.

Distance vs. Displacement

As we study the motion of objects, we must first be able to describe the object's position. Before your parent drives you to school, the car is sitting in your driveway. Your driveway is the starting position for the car. When you reach your high school, the car has changed position. Its new position is your school.

Figure 2.4 Your total change in position is measured from your house to your school.

Physicists use variables to represent terms. We will use **d** to represent car's position. We will use a subscript to differentiate between the initial position, \mathbf{d}_{o} , and the final position, \mathbf{d}_{f} . In addition, vectors, which we will discuss later, will be in bold or will have an arrow above the variable. Scalars will be italicized.

TIPS FOR SUCCESS

In some books, **x** or **s** is used instead of **d** to describe position. In \mathbf{d}_0 , said *d* naught, the subscript 0 stands for *initial*. When we begin to talk about two-dimensional motion, sometimes other subscripts will be used to describe horizontal position, \mathbf{d}_x , or vertical position, \mathbf{d}_y . So, you might see references to \mathbf{d}_{ox} and \mathbf{d}_{fy} .

Now imagine driving from your house to a friend's house located several kilometers away. How far would you drive? The **distance** an object moves is the length of the path between its initial position and its final position. The distance you drive to your friend's house depends on your path. As shown in <u>Figure 2.5</u>, distance is different from the length of a straight line between two points. The distance you drive to your friend's house is probably longer than the straight line between the two houses.

Figure 2.5 A short line separates the starting and ending points of this motion, but the distance along the path of motion is considerably longer.

We often want to be more precise when we talk about position. The description of an object's motion often includes more than just the distance it moves. For instance, if it is a five kilometer drive to school, the distance traveled is 5 kilometers. After dropping you off at school and driving back home, your parent will have traveled a total distance of 10 kilometers. The car and your parent will end up in the same starting position in space. The net change in position of an object is its **displacement**, or $\Delta \mathbf{d}$. The Greek letter delta, Δ , means *change in*.

Figure 2.6 The total distance that your car travels is 10 km, but the total displacement is 0.

Snap Lab

Distance vs. Displacement

In this activity you will compare distance and displacement. Which term is more useful when making measurements?

- 1 recorded song available on a portable device
- 1 tape measure
- 3 pieces of masking tape
- A room (like a gym) with a wall that is large and clear enough for all pairs of students to walk back and forth without running into each other.

Procedure

- 1. One student from each pair should stand with their back to the longest wall in the classroom. Students should stand at least 0.5 meters away from each other. Mark this starting point with a piece of masking tape.
- 2. The second student from each pair should stand facing their partner, about two to three meters away. Mark this point

with a second piece of masking tape.

- 3. Student pairs line up at the starting point along the wall.
- 4. The teacher turns on the music. Each pair walks back and forth from the wall to the second marked point until the music stops playing. Keep count of the number of times you walk across the floor.
- 5. When the music stops, mark your ending position with the third piece of masking tape.
- 6. Measure from your starting, initial position to your ending, final position.
- 7. Measure the length of your path from the starting position to the second marked position. Multiply this measurement by the total number of times you walked across the floor. Then add this number to your measurement from step 6.
- 8. Compare the two measurements from steps 6 and 7.

GRASP CHECK

- 1. Which measurement is your total distance traveled?
- 2. Which measurement is your displacement?
- 3. When might you want to use one over the other?
- a. Measurement of the total length of your path from the starting position to the final position gives the distance traveled, and the measurement from your initial position to your final position is the displacement. Use distance to describe the total path between starting and ending points, and use displacement to describe the shortest path between starting and ending points.
- b. Measurement of the total length of your path from the starting position to the final position is distance traveled, and the measurement from your initial position to your final position is displacement. Use distance to describe the shortest path between starting and ending points, and use displacement to describe the total path between starting and ending points.
- c. Measurement from your initial position to your final position is distance traveled, and the measurement of the total length of your path from the starting position to the final position is displacement. Use distance to describe the total path between starting and ending points, and use displacement to describe the shortest path between starting and ending points.
- d. Measurement from your initial position to your final position is distance traveled, and the measurement of the total length of your path from the starting position to the final position is displacement. Use distance to describe the shortest path between starting and ending points, and use displacement to describe the total path between starting and ending points.

If you are describing only your drive to school, then the distance traveled and the displacement are the same—5 kilometers. When you are describing the entire round trip, distance and displacement are different. When you describe distance, you only include the **magnitude**, the size or amount, of the distance traveled. However, when you describe the displacement, you take into account both the magnitude of the change in position and the direction of movement.

In our previous example, the car travels a total of 10 kilometers, but it drives five of those kilometers forward toward school and five of those kilometers back in the opposite direction. If we ascribe the forward direction a positive (+) and the opposite direction a negative (-), then the two quantities will cancel each other out when added together.

A quantity, such as distance, that has magnitude (i.e., how big or how much) but does not take into account direction is called a **scalar**. A quantity, such as displacement, that has both magnitude and direction is called a **vector**.

💿 WATCH PHYSICS

Vectors & Scalars

This <u>video (http://openstax.org/l/28vectorscalar)</u> introduces and differentiates between vectors and scalars. It also introduces quantities that we will be working with during the study of kinematics.

Click to view content (https://www.khanacademy.org/embed_video?v=ihNZlp7iUHE)

GRASP CHECK

How does this video (https://www.khanacademy.org/science/ap-physics-1/ap-one-dimensional-motion/ap-physics-

<u>foundations/v/introduction-to-vectors-and-scalars</u>) help you understand the difference between distance and displacement? Describe the differences between vectors and scalars using physical quantities as examples.

- a. It explains that distance is a vector and direction is important, whereas displacement is a scalar and it has no direction attached to it.
- b. It explains that distance is a scalar and direction is important, whereas displacement is a vector and it has no direction attached to it.
- c. It explains that distance is a scalar and it has no direction attached to it, whereas displacement is a vector and direction is important.
- d. It explains that both distance and displacement are scalar and no directions are attached to them.

Displacement Problems

Hopefully you now understand the conceptual difference between distance and displacement. Understanding concepts is half the battle in physics. The other half is math. A stumbling block to new physics students is trying to wade through the math of physics while also trying to understand the associated concepts. This struggle may lead to misconceptions and answers that make no sense. Once the concept is mastered, the math is far less confusing.

So let's review and see if we can make sense of displacement in terms of numbers and equations. You can calculate an object's displacement by subtracting its original position, \mathbf{d}_{o} , from its final position \mathbf{d}_{f} . In math terms that means

$$\Delta \mathbf{d} = \mathbf{d}_{\mathrm{f}} - \mathbf{d}_{\mathrm{0}}.$$

If the final position is the same as the initial position, then $\Delta \mathbf{d} = 0$.

To assign numbers and/or direction to these quantities, we need to define an axis with a positive and a negative direction. We also need to define an origin, or *O*. In Figure 2.6, the axis is in a straight line with home at zero and school in the positive direction. If we left home and drove the opposite way from school, motion would have been in the negative direction. We would have assigned it a negative value. In the round-trip drive, \mathbf{d}_f and \mathbf{d}_o were both at zero kilometers. In the one way trip to school, \mathbf{d}_f was at 5 kilometers and \mathbf{d}_o was at zero km. So, $\Delta \mathbf{d}$ was 5 kilometers.

TIPS FOR SUCCESS

You may place your origin wherever you would like. You have to make sure that you calculate all distances consistently from your zero and you define one direction as positive and the other as negative. Therefore, it makes sense to choose the easiest axis, direction, and zero. In the example above, we took home to be zero because it allowed us to avoid having to interpret a solution with a negative sign.

🗱 WORKED EXAMPLE

Calculating Distance and Displacement

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does she ride? (c) What is the magnitude of her displacement?

Strategy

To solve this problem, we need to find the difference between the final position and the initial position while taking care to note the direction on the axis. The final position is the sum of the two displacements, $\Delta \mathbf{d}_1$ and $\Delta \mathbf{d}_2$.

Solution

- a. Displacement: The rider's displacement is $\Delta \mathbf{d} = \mathbf{d}_{f} \mathbf{d}_{0} = -1 \, \text{km}$.
- b. Distance: The distance traveled is 3 km + 2 km = 5 km.
- c. The magnitude of the displacement is 1 km.

Discussion

The displacement is negative because we chose east to be positive and west to be negative. We could also have described the displacement as 1 km west. When calculating displacement, the direction mattered, but when calculating distance, the direction did not matter. The problem would work the same way if the problem were in the north–south or *y*-direction.

TIPS FOR SUCCESS

Physicists like to use standard units so it is easier to compare notes. The standard units for calculations are called *SI* units (International System of Units). SI units are based on the metric system. The SI unit for displacement is the meter (m), but sometimes you will see a problem with kilometers, miles, feet, or other units of length. If one unit in a problem is an SI unit and another is not, you will need to convert all of your quantities to the same system before you can carry out the calculation.

Practice Problems

- 1. On an axis in which moving from right to left is positive, what is the displacement and distance of a student who walks 32 m to the right and then 17 m to the left?
 - a. Displacement is -15 m and distance is -49 m.
 - b. Displacement is -15 m and distance is 49 m.
 - c. Displacement is 15 m and distance is -49 m.
 - d. Displacement is 15 m and distance is 49 m.
- **2**. Tiana jogs 1.5 km along a straight path and then turns and jogs 2.4 km in the opposite direction. She then turns back and jogs 0.7 km in the original direction. Let Tiana's original direction be the positive direction. What are the displacement and distance she jogged?
 - a. Displacement is 4.6 km, and distance is -0.2 km.
 - b. Displacement is -0.2 km, and distance is 4.6 km.
 - c. Displacement is 4.6 km, and distance is +0.2 km.
 - d. Displacement is +0.2 km, and distance is 4.6 km.

💼 WORK IN PHYSICS

Mars Probe Explosion

Figure 2.7 The Mars Climate Orbiter disaster illustrates the importance of using the correct calculations in physics. (NASA)

Physicists make calculations all the time, but they do not always get the right answers. In 1998, NASA, the National Aeronautics and Space Administration, launched the Mars Climate Orbiter, shown in <u>Figure 2.7</u>, a \$125-million-dollar satellite designed to monitor the Martian atmosphere. It was supposed to orbit the planet and take readings from a safe distance. The American scientists made calculations in English units (feet, inches, pounds, etc.) and forgot to convert their answers to the standard metric SI units. This was a very costly mistake. Instead of orbiting the planet as planned, the Mars Climate Orbiter ended up flying into the Martian atmosphere. The probe disintegrated. It was one of the biggest embarrassments in NASA's history.

GRASP CHECK

In 1999 the Mars Climate Orbiter crashed because calculation were performed in English units instead of SI units. At one point the orbiter was just 187,000 feet above the surface, which was too close to stay in orbit. What was the height of the orbiter at this time in kilometers? (Assume 1 meter equals 3.281 feet.)

- a. 16 km
- b. 18 km
- c. 57 km
- d. 614 km

Check Your Understanding

- 3. What does it mean when motion is described as relative?
 - a. It means that motion of any object is described relative to the motion of Earth.
 - b. It means that motion of any object is described relative to the motion of any other object.
 - c. It means that motion is independent of the frame of reference.
 - d. It means that motion depends on the frame of reference selected.
- **4**. If you and a friend are standing side-by-side watching a soccer game, would you both view the motion from the same reference frame?
 - a. Yes, we would both view the motion from the same reference point because both of us are at rest in Earth's frame of reference.
 - b. Yes, we would both view the motion from the same reference point because both of us are observing the motion from two points on the same straight line.
 - c. No, we would both view the motion from different reference points because motion is viewed from two different points; the reference frames are similar but not the same.
 - d. No, we would both view the motion from different reference points because response times may be different; so, the motion observed by both of us would be different.
- 5. What is the difference between distance and displacement?
 - a. Distance has both magnitude and direction, while displacement has magnitude but no direction.
 - b. Distance has magnitude but no direction, while displacement has both magnitude and direction.
 - c. Distance has magnitude but no direction, while displacement has only direction.
 - d. There is no difference. Both distance and displacement have magnitude and direction.
- 6. Which situation correctly identifies a race car's distance traveled and the magnitude of displacement during a one-lap car race?
 - a. The perimeter of the race track is the distance, and the shortest distance between the start line and the finish line is the magnitude of displacement.
 - b. The perimeter of the race track is the magnitude of displacement, and the shortest distance between the start and finish line is the distance.
 - c. The perimeter of the race track is both the distance and magnitude of displacement.
 - d. The shortest distance between the start line and the finish line is both the distance and magnitude of displacement.
- 7. Why is it important to specify a reference frame when describing motion?
 - a. Because Earth is continuously in motion; an object at rest on Earth will be in motion when viewed from outer space.
 - b. Because the position of a moving object can be defined only when there is a fixed reference frame.